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Frustration without Competing Interactions 
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The concept of frustration is investigated following an idea of Anderson. A 
simple, frustrated in Anderson's sense, nonrandom classical lattice spin system 
without competing interactions is discussed, which exhibits infinitely many 
equilibrium states at low temperature. The overlap distribution function is 
calculated exactly to be a delta function at zero. 
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Systems with rich g round-s t a t e  s t ructure  such as spin glasses have a t t rac ted  
much  a t t en t ion  recently. (1) I t  is bel ieved that  f rus t ra t ion  (2"3) and r a n d o m -  

ness of in te rac t ions  are two necessary ingredients  for p roduc ing  the com- 
pl ica ted  behav ior  of such systems. We will discuss f rus t ra t ion  in simple, 
de terminis t ic  (i.e., wi thout  r a n d o m  interac t ions) ,  t r ans la t ion - inva r i an t  
classical  la t t ice spin models ;  for a review of per iod ica l ly  f rus t ra ted  systems 
see refs. 1 and  4. The  a p p r o a c h  to f rus t ra t ion  which appears  a lmos t  
exclusively in the l i te ra ture  is tha t  involving compet ing  in terac t ions  and  
was in t roduced  by  Toulouse .  (2) I t - i s  best  i l lus t ra ted by  the example  of 
an an t i fe r romagnet ic  nea res t -ne ighbor - in te rac t ion  sp in - l / 2  mode l  on the 
t r i angu la r  lattice. The  formal  H a m i l t o n i a n  can be wri t ten as follows: 

H = ~,  [T i t~ j (1) 
i , j  

where  ai ,  a j  = + 1 and  i and  j are neares t  ne ighbor  sites on the t r i angula r  
lattice. W h e n  one looks  at  an e lementa ry  t r iangle  it is easy to see tha t  at 
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least one pair of spins does not minimize its interaction. Two spins align 
themselves in opposite directions and then the third one can minimize only 
one of the two remaining interactions. This choice is a source of frustration. 
Although it is very picturesque, this approach depends strongly on the par- 
ticular choice of interactions describing the system. For  example, in the 
above model instead of the Hamiltonian H we could use 

H '  = ~ ~ba (2) 
z/ 

where the sum is over all elementary triangles and ~bA= 1/2(aiaj+ 
ajak + akai), where i, j, and k are the vertices of an elementary triangle zl. 
Both H and H '  describe the same physical system: they have the same 
equilibrium states. There are, however, spin configurations, the ground 
states, such that every three-spin interaction in H '  attains its minimum. 
Three spins on every elementary triangle still face choices but they act 
collectively and therefore are not frustrated. Hamiltonians for which there 
exist configurations minimizing all interactions simultaneously are called 
minimal potentials and were introduced by Holsztynski and Slawny. ~5'6) 
There is no known example of a translation-invariant Hamiltonian for 
which one cannot find an equivalent minimal potential. 

There is another approach to frustration, due to Anderson. ~3) He 
suggests the following construction. Divide the lattice into cubes of side 
length L Find the configurations of two adjacent cubes with the lowest 
energy (with the interaction between cubes cut off). Now calculate the 
variance E 2 of the interaction between the cubes with respect to all possible 
choices of the above lowest energy configurations. The spin system is then 
called frustrated if E "2 is not proportional to the square of the area of the 
face of the cube: 

E2/l 4 ~ 0 (3) 

It is interesting to note that the most popular model with competing 
interactions, the ANNNI model,~7~ is not frustrated according to the above 
definition. The reason is that its ground states have one-dimensional struc- 
ture. The nearest neighbor interaction along one (say x) direction is 
ferromagnetic and the next nearest neighbor interaction in the same direc- 
tion is antiferromagnetic, which produces infinitely many ground states. 
The nearest neighbor ferromagnetic interactions along the y and z direc- 
tions make one-dimensional ground states repeat in these directions. Any 
contribution to E 2 across the face perpendicular to the x axis is automati- 
cally multiplied by l 4. 
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Now we will discuss an example of a system frustrated in Anderson's 
sense but without competing interactions. It is a ferromagnetic translation- 
invariant spin-l/2 model (Slawny model ~8)) on the cubic lattice with the 
following Hamiltonian: 

H = - S  ~,GjG, G,o (4) 

where i, j, k, and m are vertices of a plaquette (an elementary square) and 
the sum is over all plaquettes. The following are ground-state configura- 
tions of this model: ( - ) spin on the x y  plane and ( + ) spin everywhere else 
and similarly with the x z  and y z  planes. It is easy to see that every ground- 
state configuration can be generated using translates of these three 
configurations and superpositions [two superposed ( - )  spins create 
( + )  spin]. There is an infinite (continuum) number of them and in each, 
every plaquette contains an even number of ( - )  spins having the smallest 
possible energy; the interaction is a minimal potential. Nevertheless, the 
system is frustrated. Using the fact that any ferromagnetic Hamiltonian is 
invariant under a spin flip associated with any of its ground-state con- 
figurations, to calculate E 2 o n e  can fix all ( + )  spins in one box and vary 
the ground-state configurations in the other one. Let us compute E 2 across 
the face perpendicular to the x axis. A part of a ground-state configuration 
in one box interacting with the ( + ) configuration in the other one may be 
seen as generated by planes with ( - ) spins and perpendicular to the y and 
z axes. Let k and d denote the number of pairs of the nearest neighbor 
parallel planes such that all spins are flipped in one of them only. This 
raises the energy of the interaction across the face of a cube of side length 
l by 2( /+ 1)(k + d). Taking into account all 2t2 t choices of different planes, 
we obtain 

k=o a=o k d 
(5) 

and after some algebra 

E z = 2 ( / +  1)2/ (6) 

We have shown that a very simple deterministic model without com- 
peting interactions is frustrated in Anderson's sense. Below we will show 
that it has a very rich structure of low-temperature equilibrium states while 
having a trivial overlap distribution function. 

Using the general theory of ferromagnetic systems developed by 
Holsztynski and Slawny, (6'9 12) one can show that every ground-state con- 
figuration corresponds to a low-temperature equilibrium state which is a 
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small perturbation. Therefore, we have many complicated low-temperature 
magnetic structures, not only the simple periodic ones observed in all 
periodically frustrated spin systems studied so far. (1) Let Po be the infinite- 
volume limit of the Gibbs state with free boundary conditions. In its 
decomposition into extremal states every Gibbs state corresponding to one 
of the above-described ground-state configurations contributes with the 
same weight. Having complete information about low-temperature equi- 
librium states and the decomposition of Po one can compute explicitly the 
overlap distribution function P(q), an order parameter introduced by 
Parisi(X3): 

P(q) = ~ p~p~6(q- q~) (7) 

where 

q~,~ = lim 1/l 3 ~ (a~)~ (ai) ~ (8) 
/ ~ o ~  i 

and p~ is the weight of the pure phase ( - ) ~  in the decomposition of Po into 
extremal Gibbs states. Because of the above-mentioned symmetries of our 
ferromagnetic Hamiltonian, to compute P(q) it is enough to consider over- 
laps between the configuration with all ( + )  spins and all other ground- 
state configurations. If a ground-state configuration is generated by super- 
position of d, k, and s planes with ( - )  spins, and perpendicular respec- 
tively to x, y, and z axes, the overlap is equal to ( l - 2 d ) ( / - 2 k ) ( / - 2 s ) / l  3. 
Now we will prove that P(q) = 6(q), the delta distribution at 0. It is enough 
to show that ~t p(q) dq = 0 for every 0 < r < t ~< 1. We have 

f/ P(q) dq 

~< lim 6/231l 3 ~ d k s 
l ~  d = O  k = O  s = O  

(9) 

The last equality follows from the fact that the binomial random variable 
is asymptotically normal. In a more general context the triviality of the 
overlap distribution function follows from the ergodicity of the Haar 
measure present in (7). (14) The overlap distribution in our example is a 
delta distribution even in the presence of many phases. It was pointed out 
recently by Huse and Fisher (15] that the overlap distribution is not a very 
reliable indicator of the number of pure phases in the system. 

In conclusion, we note that the nonrandom model frustrated in 
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Anderson ' s  sense but  wi thou t  compet ing  in terac t ions  and  with an infinite 
n u m b e r  of l ow- t empera tu re  phases  was invest igated.  In  the presence of an 
external  magnet ic  field all equi l ib r ium states of this mode l  except  the 
fe r romagnet ic  one d isappear .  I t  wou ld  be interes t ing to cons t ruc t  a non-  
r a n d o m  mode l  with m a n y  phases  even in the presence of an external  
magne t ic  field and  then to compa re  it with the behav ior  of a f ie ld-cooled 
spin glass. 
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